
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Forecasting Influenza-like Illness using Physics Informed Neural Ordinary
Differential Equations
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Abstract

We present a method of using Physics informed
neural ODEs to forecast influenza at a state, re-
gional, and national level in the US. It is better
than previous works and is more stable/better etc
etc.

1. Introduction
Estimating the current and future prevalence of an infec-
tious disease enables public health organisations to prepare
for and mitigate the effects of that disease. The impact of
forecasting models was highlighted during the Covid-19
pandemic where forecasts informed policy decisions aimed
at reducing the prevalence of Covid-19 through lock-downs
and social distancing. While the pandemic is over there
is still a need to forecast both established and novel infec-
tious diseases. According to the World Health Organisation,
Influenza is responsible for between 290,000 and 650,000
deaths each year with the potential to cause a pandemic.
Forecasting the prevalence of influenza allows policy mak-
ers to decide when and whe to focus their efforts, such as
vaccinations, hygiene programs and antivirals.

We focus on influenza forecasting due to the well estab-
lished datasets going back to 2004 at a US national level
and to 2010 at a state level. In the US the prevalence of
influenza is monitored through a syndromic surveillance
network of 2000 healthcare providers across the US. Instead
of measuring the prevalence of influenza they substitute it
for a proxy influenza-like-illness (ILI). ILI is defined as a
fever (temperature of 37.8° or greater) and cough and/or
sore throat without a known cause besides influenza. ILI is
weighted by population to estimate the weighted ILI (wILI)
at a regional and national level. ILI is a noisy signal which
may account for other diseases such as RSV, and more re-
cently Covid-19. There is also considerable noise in the
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ILI rate, which has been observed to be inversely related
to the population of the region. For example, Alaska will
have a more noisy ILI rate than California - which has a
much larger population. The influence of other diseases
and population dependent noise result in a signal which is
difficult to forecast.

The difficulty is compounded because ILI data is collected
with a delay of up to two weeks due to the time taken to
collect and process the case counts over a large networks
of healthcare providers. Conversely, exogenous data can
be collected in real time and may provide a more timely
indication of the ILI rate. Exogenous variables provide ad-
ditional information which can be used to improve forecast
accuracy. The use of exogenous Web search activity data
is well established ILI modelling—(Ginsberg et al., 2009;
Yang et al., 2015; Lampos et al., 2015; 2017; Morris et al.,
2023). Web search data refers to frequencies of searches
using a user defined keyword or keywords in a web browser
i.e., Google, for a set region and time period. For example
the frequency of searches for “flu remedies” in California
on the first of January. These searches include symptoms,
medicines, information about different strains etc. The meth-
ods proposed in (Morris et al., 2023) leverages this more
recent Web-search data to improve their forecasts. We in-
corporate a similar method and incorporate Web search data
into our models to improve forecasting performance.

Epidemic forecasting models fall into two camps, mechanis-
tic and non-mechanistic models, often these are referred to
as mechanistic and statistical, however mechanistic models
are trained as statistical models so we avoid this distinction.
Mechanistic estimate the spread of a disease by modelling
the underlying process of individuals (or groups of individ-
uals) interacting with the disease, becoming infected and
later recovering or dying. These models are either com-
partmental - where the population is split up into groups
where everyone in a group has the same interaction with the
disease at a given time, described by an ordinary differential
equation (ODE), or agent based models where individuals
are modelled including. We focus on compartmental mod-
els which are better suited to forecasting as they are more
trainable.

Non-mechanistic models learn patterns directly from train-
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ing data with no prior knowledge of the underlying mecha-
nism that they are modelling. These tend to be more accurate
for epidemic modelling (Reich et al., 2019). Recent work
using Bayesian neural networks(Morris et al., 2023) used
Web search activity data to forecast ILI accurately with well
calibrated uncertainty.

Neural networks have several advantages over mechanis-
tic models, by removing assumptions and learning directly
from data they are more flexible — meaning that they can
learn to fit any data regardless of how complex it is. This
flexibility extends to enabling them to incorporate exoge-
nous variables with minimal change to the model. This
benefit is made possible because neural networks are easy
to scale, the limiting factory on the number of inputs is the
size of the training set which is available (a larger train-
ing allows the model to learn more complex relationships
between more diverse inputs).

However, neural networks are limited by their dependence
on large datasets to learn patterns in the data - this is sel-
dom available for disease forecasting, even the US only has
weekly state level data going back to 2010 (≈ 800 data
points). It is also unclear how well these models will gener-
alise to a state level where the ILI signal is far more noisy,
and the Web search activity data is more sparse.

To make predictions they must learn parameters from train-
ing data which does not always generalise across different
seasons or diseases. This means that for every new flu sea-
son there is no guarantee of the model’s performance. The
problem is compounded in unusual or epidemic seasons
where accurate forecasts are potentially the most useful.

Compartmental models are less dependent on large datasets.
Due to their grounding in physical assumptions they behave
reasonably in out-of-sample scenarios. Physical assump-
tions do not guarantee accuracy, but they do reduce the
model’s dependence on training data to learn patterns.

The advantages and disadvantages of mechanistic models
and neural networks are contrasting, mechanistic models are
less flexible but well understood with statistical guarantees
and less reliance on data. Neural networks are flexible and
accurate, but poorly understood without statistical guaran-
tees and require large datasets and careful training to provide
good results. We present a physics informed neural network
which benefits from the advantages of both models while
providing more accurate ILI forecasts than the top perform-
ing statistical models at a state, regional, and national level
in the United States.

The benefits of mechanistic models mean that they are pop-
ular in the epidemiology community, this is despite the fact
that non-mechanistic models are known to be more accu-
rate for forecasting. The disadvantages of mechanistic and
non-mechanistic models are unavoidable, but it is possible

to design a model to selectively use mechanistic and non-
mechanistic components to benefit from the advantages of
both.

1.1. Compartmental Models

Next I describe how a model can be designed to benefit from
both approaches. I focus on using an SIR model, but the
method is generally applicable to any compartmental model.
The equations of an SIR model are:

ds

dt
= −β · s · i

di

dt
= β · s · i− ω · i

dr

dt
= ω · i

where s, i and r are the susceptible, infected and recov-
ered proportion of the population. The transmission rate
β represents the rate at which susceptible individuals be-
come infected upon contact with infectious individuals. The
recovery rate ω represents the rate at which infectious in-
dividuals recover and move to the recovered state. I use ω
instead of γ because we often use γ as the forecast horizon.

In ILI modelling there are four areas that we cannot easily
model with a mechanistic model:

1. We do not know, and cannot measure the exact number
of susceptible, infected and recovered people in a pop-
ulation, models with more compartments have more
unknowns.

2. We do not know the β and ω parameters which govern
the disease spread. But, in some situations, β or γ may
be known and we want to be able to easily modify the
model to use this additional information. In others we
may have a rough idea but do not know exactly, again
we would like to be able to leverage this information.

3. We do not know, and cannot measure the relationship
between the s, i and r parameters and the measured
ILI rate. This is similar to the first problem, except in
the first we want to estimate s, i and r from the ILI
rate, and here we want to estimate ILI rate from s, i,
and r.

4. No compartmental model exists which can exactly fit to
the ILI trajectory, instead we want to be able to model
the discrepancy between the compartmental model and
the ground truth.

1.2. Contributions

Our main contribution is a generalised framework that
solves each of these problems using separate neural net-
works, as well as a method for training the combined model
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directly from data in a reliable way. If for any reason one of
these components is not required, for example if we know
the initial conditions, or know the relationship between the
ground truth and the model components then we can add or
remove the neural network and replace it with a mechanistic
component.

The combined model uses a known mechanistic model up
to the limit of its forecasting ability and uses neural net-
works that learn patterns from the data to improve accuracy.
The compartmental model still behaves in the same way
as existing compartmental models, we can decompose the
augmentation and SIR and see what is happening, includ-
ing observing the estimated parameters for any timestep.
This guarantees reasonable behaviour including in unseen
situations. Introducing physical constraints should also re-
duce the dependence on large datasets and thus improve the
forecasting accuracy.

2. Methods
First we describe the datasets, then the model setup and
architectures. Different latencies from different data sources
in ILI forecasting can introduce ambiguity to forecasting
setup. We obtain ILI rates up to t0, however there is a
reporting latency of δ = 14 days in ILI data. We can
download web search data up to the current time i.e., for
t > t0. Thus in our experiments we use ILI data up to t0
and web search data up to t0 + δ. When we refer to the
forecast horizon γ it is from time t0. This is consistent
with other forecasting literature, but it should be noted that
forecasts up to γ = 14 are actually estimating previous (but
still unknown) ILI rates.

2.1. Datasets

Influenza-like illness rates
Influenza-Like Illness (ILI) is characterized by a fever (tem-
perature of 37.8° or higher)) and cough and/or sore throat
without a known cause besides influenza. To monitor the
prevalence of ILI, various surveillance efforts, including
the Outpatient Influenza-Like-Illness Surveillance Network
(ILINet), have been established. ILINet collects weekly ILI
rates at the state level from over 2,000 healthcare providers
across all states.

For forecasting purposes, ILI is projected at the state, re-
gional, and national levels. The Office of Intergovernmental
and External Affairs oversees 10 Regional Offices, referred
to as Health and Human Services (HHS) regions. Each
HHS region encompasses multiple states within a larger
geographic area. To provide a ILI rates at larger geographic
regions, state-level ILI rates are weighted by population
size, resulting in the calculation of Weighted ILI (wILI) at
HHS regions and National level.
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ILI
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Decoder

RNN Encoder
Data

t0 + δt0 t0 + γ

Output
ILI Rate
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Data

t0 − τ

IL
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Figure 1. VAE Diagram
The RNN Encoder observes ILI rates and queries backwards in
time from t0 + δ to t0 − τ

Web Search query frequency
Search query frequencies for the US are obtained from the
Google Health Trends API similarly to other studies (Morris
et al., 2023; Lampos et al., 2021; 2017). A frequency rep-
resents the fraction of searches for a certain term or set of
terms divided by the total amount of searches (for any term)
for a day and a certain location. We employ the same query
selection method as in our prior work using Bayesian neural
networks (Morris et al., 2023). We initially downloaded
a predetermined pool of the 500 best queries for national
level forecasting. State level query frequencies are aggre-
gated based on population size to HHS level. For each test
season we choose the top m queries based on the semantic
similarity to flu (Lampos et al., 2017) correlation between
each query and the preceding five years of ILI rates (Morris
et al., 2023). Query frequencies are smoothed using a 7-day
moving average, and min-max normalisation is applied to
each query’s time series during training (i.e. without using
any future data).

2.2. Architectures

We use a variational autoencoder (VAE) architecture where
the encoder observes sequences of ILI rates and web search
query frequencies from each region to estimate latent initial
conditions. A latent ODE model integrates the initial con-
ditions forwards in time and a decoder converts the latent
trajectories back into ILI rates. We maintain the same ar-
chitecture for the encoder and decoder, but vary the ODE
model to compare different methods.
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Augmentation
NN

Parameter
NN

β, ωs
i
z 3
...
z N

ds
di

0
...
0

+
+

Fp

Fa

ds=-βsi
di=βsi-ωi

Figure 2. UONN Diagram
The UONN, here shown for a single region, is a universal differ-
ential equation made up of a physical model (Fp) and an augmen-
tation model (Fa). The physical model is derived an SIR model
where the parameters β, ω are estimated by the parameter neural
network. The augmentation NN minimises the error between Fp
and the ILI rate. Both NNs use the SIR inputs as well as additional
variables Z1:N which are determined by the encoder. This enables
gives the model additional information about the disease which
would not be available from the ODE compartments. CONN uses
only Fp, whereas SONN uses only Fa, the architectures are other-
wise identical.

Encoder
We employ a Gated Recurrent Unit (GRU) (Cho et al., 2014)-
based Recurrent Neural Network (RNN) to process queries
and Influenza-Like Illness (ILI) rates backwards in time
from t0 + δ and t0 to t0 − τ , respectively. Missing values
in the ILI rate time series are padded with −1, resulting
in a [b× (τ + δ)×Nr(1 +m)] matrix. Here, b represents
the batch size, τ is the window size, Nr is the number of
regions (1 for national, 10 for regional, and 49 for state1),
and m is the number of search queries used by each region.
The encoder comprises LGRU GRU layers. The output of
the last GRU layer at time t0 − τ is then fed into LFF feed-
forward layers. The selection of the number and size of these
GRU and FF layers is determined through hyperparameter
tuning. The output of the encoder Zt0−τ is a [2 × Nr ×
zdim − 1] matrix, where each region is associated with zdim
values, containing means and standard deviations of the
latent distribution for each region.

We use the reparameterisation trick to sample from the la-
tent distribution. The first c values of the latent distribution
for each region correspond to the initial conditions for each
of the c compartments in the compartmental model. The
constraint

∑c
i=1 zi,r = 1 holds, where r denotes the region.

Therefore, we compute the initial value of the cth (recov-
ered) compartment as 1−

∑c−1
i=1 zi,r. The remaining values

in the latent distribution supply additional information to the
ODE model so that it can make more accurate predictions. If
we only supply the model with the initial conditions for the c

1no ILI data available for Florida

compartments the ODE cannot make informed estimates of
the disease transmission characteristics. The sampled initial
conditions are reshaped into a [b ∗ Ns, Nr ∗ zdim] matrix,
where Ns is the number of samples taken from the latent
distribution.

Latent ODE Models
We employ three ODE models, A traditional neural-ODE
without a mechanistic component, denoted Simple-ODE-
NN (SONN). A neural-ODE that estimates parameters of
a compartmental model denoted Compartmental-ODE-NN
(CONN), and a universal-differential-equation (UDE) model
derived from CONN, incorporating an additional augmenta-
tion neural network denoted Universal-ODE-NN (UONN).

The SONN model is an LODE layered FF neural network, it
observes the latent states Zt at time t, and estimates gradi-
ents dZt/dt.

The CONN model is an SIR model which uses the same
SIR equations but the parameters vary with time and are
estimated by a neural network in the ODE function. The
ODE function uses a neural network to estimate the SIR pa-
rameters [βt, ωt] = Fθode(xt), where Fθode(xt) represents
a neural network with parameters θode. The network con-
sists of three layers. The first two use the eLu activation
function. The final layer uses an abs activation function
to prevent β and ω from being negative. Parameters for
each regions are computed simultaneously, however there is
no interaction between the regions. For example infections
from California cannot affect individuals in Nevada.

The UONN model uses the same physical model as
CONN with an additional non-mechanistic component de-
fined by a neural network. At a national level this augments
the ODE to become a universal differential equation. For
the state and regional models the augmentation model can
also estimate transmission between regions. This enables
the model to behave as a metapopulation model in addition
to being a UDE. The compartmental component acts on
each region individually,

Decoder
The decoder is an single layered FF neural network, it ob-
serves the latent trajectories and converts estimates Nr ILI
rates. For the CONNand UONNthe decoder only observes
the c ∗ Nr latent trajectories associated with the compart-
mental models for each region. For the SONN it observes
all Zdim ∗Nr trajectories.

2.3. Training

We train the models using the Evidence-Lower-Bound
(ELBO) where the likelihood term is calculated between
the distribution over trajectories (calculated by sampling
from the latent initial conditions) and the ground truth. We

4
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sample K times from the latent initial conditions, integrate
each of the K samples forward to t0 + γ , then decode the
latent trajectories. We then compute the mean and standard
deviation over the K samples which are used to compute the
NLL. We find that a larger value of K results in more stable
training at the cost of computational complexity. For this
reason, we begin the training with K = 32 samples, and
double K after 100 epochs, and again after 400 epochs (we
train for a total of 500 epochs). We find this to be increase
the training speed while allowing the models to converge.

The prior distribution over the latent initial conditions is
N (0, 1). However, for the mechanistic components of the
ODE models — s and i for an SIR model — we use prior dis-
tributions specific to that component which are chosen via
tuning. For the susceptible and infectious fractions the prior
distribution is p(st0−τ , it0−τ ) = N

(
zµt0−τ

, [0.1, 0.01]
)
.

Thus, the means are the estimated means taken from the
output of the encoder and only the standard deviations are
regularised. We make this design choice because the stan-
dard deviations of the latent initial conditions are small but
the mean is situational, for instance the susceptible fraction
may change from ≈ 1 to ≈ 0 over a flu season.

In addition to regularising the latent initial conditions, we
regularise the model to choose reasonable values for β and
ω. Due to the samples from the initial conditions we have a
time-varying distribution over β and ω. We regularise the
parameters to a prior pθP (β, ω) = N ([0.8, 0.55], [0.1, 0.1])
using the KL divergence:

LKLp = DKL(qθode(β, ω)||p(β, ω)), (1)

where qθode(β, ω) is the posterior distribution over the pa-
rameters. We chose the prior based on related work (Osthus
et al., 2019), we experimented with variations on this prior
but found no noticeable improvement.

Stability
Variational Autoencoders (VAEs) often exhibit instability
during training, characterized by high reconstruction loss
(NLL in our case) or KL losses. Following prior work
on VAEs (Child, 2020), we skip updates with a gradient
norm surpassing a threshold set by a hyperparameter. The
threshold is chosen empirically, and a plot of gradient norms
during training is provided in Supplementary Figure ABC.

In addition to skipping updates with exceptionally large
gradient norms, we also employ cyclical annealing (Fu
et al., 2019) to improve stability and mitigate KL vanishing.
Through hyperparameter tuning, we observe an average
25% improvement in NLL using a cosine KL annealing
scheduler.

For the physics-informed models (CONNand UONN), we
introduce an additional loss function to penalize instances
where the latent trajectories generated by the compartmental

model exceed 1 or fall below 0:

Lreg(z) =
∑
t


|zt| − 1 if zt > 1

|zt| if zt < 0

0 otherwise.
(2)

This is only necessary when the initial conditions are poorly
specified and s0 + i0 > 1. Despite accelerating conver-
gence and improving stability, this addition to the loss func-
tion does not impact model performance after training; for
trained models, Lreg(z) should always equal 0. Addition-
ally, we set the outputs of the ODE model to zero when
the corresponding input is > 2 or −1 to enhance stability
during early training stages. However, this adjustment has
no effect once the model can produce reasonable forecasts.

Lastly, we perform pre-training on the encoder to minimise
the KL divergence from the prior. Integrating and back-
propagating with the Ordinary Differential Equation (ODE)
solver are the slowest phases of training. Pre-training using
only the encoder significantly accelerates convergence.

3. Experiments
3.1. Metrics

We use NLL and

3.2. Baselines

What I’ve done:

1. Tuning for HHS CONN, was slow (2 weeks CPU
24x) because I didn’t know which encoder architecture
would work best and I added a lot of stability/speed im-
provements - see methods. Future tuning is faster (ap-
proximately 3x faster but dependent on server space).

2. Identified best encoder - GRU reading backward.

3. Set up experiments for other tasks, haven’t done na-
tional yet but this should be the easiest one.

4. written methods - not complete as experiments are not
complete.

5. HHS Results done

6. Changed UONN training to be CONN + post training
with Fa - this works better, needs to be quantified.

Problems
Dante not working at state or regional level. ODEs not
working at national level. Regional level ODEs are better
than national level. Tried different tuning, tried pre training.
Looks like ODEs are too confident - NLL is terrible for
national level ODEs. could be overfitting? Could be a lack
of uncertainty in the actual ODE.
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Horizon 7 14 21 28
NLL Skill NLL Skill NLL Skill NLL Skill

State
IRNNs 0.03 0.04 0.05 0.05
SONN 2.14 0.20 2.17 0.18 2.17 0.18 2.18 0.17
CONN 0.88 0.39 1.04 0.36 1.23 0.32 1.51 0.28
UONN 1.51 0.26 2.37 0.25 2.44 0.23 2.51 0.21

Regional
IRNNs 0.49 0.44 0.40 0.34
SONN 0.90 0.46 0.97 0.42 1.06 0.39 1.13 0.36
CONN 1.31 0.30 1.47 0.27 1.66 0.24 1.89 0.21
UONN 1.56 0.24 1.62 0.22 1.71 0.21 1.82 0.19

National
IRNNs 0.24 0.71 0.24 0.71 0.67 0.62 0.87 0.58
SONN 1.73 0.64 1.78 0.58 1.86 0.50 1.93 0.42
CONN 0.28 0.67 0.43 0.65 0.59 0.60 0.79 0.53
UONN 0.50 0.57 0.58 0.55 0.73 0.50 0.92 0.46

Table 1. Results Table
Results averaged over all flu seasons.

Currently running

1.

To do

1. Dante - had problems with this and it only worked for
2017/18, the other seasons’ results are terrible, this will
work at all geographic levels in 1 go though. Not sure
what the problem is but potential to just remove it and
use the IRNN as a baseline + could include something
basic like Bayesian linear regression.

Improvements

1. Changed training for UONN, works now.

Deadlines

1. ICML - 1st February

2. CHIL - 6th February (healthcare orientated)

3. KDD - 9th February (Data Science: Methods for ana-
lyzing social networks, time series, sequences, streams,
text, web, graphs, rules, patterns, logs, IoT data, spatio-
temporal data, biological data, scientific and business
data; recommender systems, computational advertis-
ing, multimedia, finance, bioinformatics.)

4. If I miss these the next ones are in April, and NeurIPS
in May. Funding till end of March, I think without a
deadline this would take me until March.

5. PhD Viva is on 5th February, need a few days to
prepare at some point

3.3. Results

Averages (for the paper)

4. Related Work

5. Bibliography
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Forecasting Influenza-like Illness using Physics Informed Neural Ordinary Differential Equations

γ = 7
Model 2015 2016 2017 2018 2015-18

SONN 0.27 0.19 0.10 0.15 0.17
CONN 0.36 0.23 0.23 0.22 0.25
UONN 0.33 0.30 0.21 0.26 0.27
IRNN 0.06 0.07 0.04 0.01 0.03
Dante

γ = 14
Model 2015 2016 2017 2018 2015-18

SONN 0.27 0.17 0.09 0.14 0.16
CONN 0.33 0.21 0.21 0.21 0.24
UONN 0.32 0.28 0.19 0.24 0.25
IRNN 0.03 0.08 0.06 0.02 0.04
Dante

γ = 21
Model 2015 2016 2017 2018 2015-18

SONN 0.27 0.16 0.09 0.14 0.15
CONN 0.30 0.21 0.19 0.19 0.22
UONN 0.30 0.26 0.16 0.23 0.23
IRNN 0.04 0.07 0.07 0.03 0.05
Dante

γ = 28
Model 2015 2016 2017 2018 2015-18

SONN 0.26 0.15 0.08 0.13 0.14
CONN 0.26 0.21 0.18 0.17 0.20
UONN 0.28 0.25 0.14 0.22 0.22
IRNN 0.04 0.08 0.07 0.03 0.05
Dante

Table 2. State Level Skill for all Seasons and Horizons, missing
values to be populated as they become available. Something wrong
with state IRNN, i’m not sure what yet.

6. Appendix

γ = 7
Model 2015 2016 2017 2018 2015-18

SONN 0.46 0.42 0.50 0.40 0.44
CONN 0.49 0.49 0.40 0.48 0.46
UONN 0.63 0.44 0.45 0.48 0.50
IRNN 0.63 0.48 0.45 0.44 0.49
Dante

γ = 14
Model 2015 2016 2017 2018 2015-18

SONN 0.41 0.39 0.46 0.33 0.39
CONN 0.45 0.45 0.36 0.41 0.42
UONN 0.57 0.40 0.42 0.44 0.46
IRNN 0.58 0.42 0.40 0.38 0.44
Dante

γ = 21
Model 2015 2016 2017 2018 2015-18

SONN 0.38 0.37 0.42 0.26 0.35
CONN 0.42 0.42 0.34 0.36 0.38
UONN 0.52 0.37 0.38 0.40 0.41
IRNN 0.52 0.38 0.38 0.34 0.40
Dante

γ = 28
Model 2015 2016 2017 2018 2015-18

SONN 0.35 0.35 0.39 0.24 0.33
CONN 0.38 0.41 0.32 0.33 0.36
UONN 0.48 0.33 0.34 0.37 0.38
IRNN 0.42 0.31 0.33 0.30 0.34
Dante

Table 3. HHS Level Skill for all Seasons and Horizons, missing
values to be populated as they become available.
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